Bilayer superfluidity of fermionic polar molecules: Many-body effects
نویسندگان
چکیده
منابع مشابه
Interlayer superfluidity in bilayer systems of fermionic polar molecules.
We consider fermionic polar molecules in a bilayer geometry where they are oriented perpendicularly to the layers, which permits both low inelastic losses and superfluid pairing. The dipole-dipole interaction between molecules of different layers leads to the emergence of interlayer superfluids. The superfluid regimes range from BCS-like fermionic superfluidity with a high Tc to Bose-Einstein (...
متن کاملSpontaneous interlayer superfluidity in bilayer systems of cold polar molecules
Recent experimental progress in producing ultracold polar molecules with a net electric dipole moment opens up possibilities for realizing quantum phases governed by the long-range and anisotropic dipole-dipole interactions. In this work we predict the existence of experimentally observable broken-symmetry states with spontaneous interlayer coherence in cold polar molecule bilayers. These exoti...
متن کاملSuperfluidity and dimerization in a multilayered system of fermionic polar molecules.
We consider a layered system of fermionic molecules with permanent dipole moments aligned perpendicular to the layers by an external field. The dipole interactions between fermions in adjacent layers are attractive and induce interlayer pairing. Because of the competition for pairing among adjacent layers, the mean-field ground state of the layered system is a dimerized superfluid, with pairing...
متن کاملTunable superfluidity and quantum magnetism with ultracold polar molecules.
By selecting two dressed rotational states of ultracold polar molecules in an optical lattice, we obtain a highly tunable generalization of the t-J model, which we refer to as the t-J-V-W model. In addition to XXZ spin exchange, the model features density-density interactions and density-spin interactions; all interactions are dipolar. We show that full control of all interaction parameters in ...
متن کاملStable topological superfluid phase of ultracold polar fermionic molecules.
We show that single-component fermionic polar molecules confined to a 2D geometry and dressed by a microwave field may acquire an attractive 1/r(3) dipole-dipole interaction leading to superfluid p-wave pairing at sufficiently low temperatures even in the BCS regime. The emerging state is the topological p(x) + ip(y) phase promising for topologically protected quantum information processing. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2011
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.83.043602